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Abstract

Introduction: Abnormal fibrinolysis early after injury has been associated with increased mortality in trauma patients, but no studies
have addressed patients with burn injury. This prospective cohort study aimed to characterize fibrinolytic phenotypes in burn
patients and to see if they were associated with mortality.

Methods: Patients presenting to a regional burn centre within 4 h of thermal injury were included. Blood was collected for sequential
viscoelastic measurements using thromboelastography (RapidTEGTM) over 12 h. The percentage decrease in clot strength 30 min after
the time of maximal clot strength (LY30) was used to categorize patients into hypofibrinolytic/fibrinolytic shutdown (SD), physiologi-
cal (PHYS) and hyperfibrinolytic (HF) phenotypes. Injury characteristics, demographics and outcomes were compared.

Results: Of 115 included patients, just over two thirds were male. Overall median age was 40 (i.q.r. 28–57) years and median total
body surface area (TBSA) burn was 13 (i.q.r. 6–30) per cent. Some 42 (36.5 per cent) patients had severe burns affecting over 20 per
cent TBSA. Overall mortality was 18.3 per cent. At admission 60.0 per cent were PHYS, 30.4 per cent were SD and 9.6 per cent HF. HF
was associated with increased risk of mortality on admission (odds ratio 12.61 (95 per cent c.i. 1.12 to 142.57); P¼ 0.041) but not later
during the admission when its incidence also decreased. Admission SD was not associated with mortality, but incidence increased
and by 4 h and beyond, SD was associated with increased mortality, compared with PHYS (odds ratio 8.27 (95 per cent c.i. 1.16 to
58.95); P¼ 0.034).

Discussion: Early abnormal fibrinolytic function is associated with mortality in burn patients.

Introduction
The fibrinolytic system plays an important role in maintaining
vascular patency by controlling the extension of the clot during
haemostasis and mediating clot resolution1. Early changes in fi-
brinolysis have important implications for patients with severe
trauma. Moore and colleagues identified three fibrinolytic pheno-
types, fibrinolytic shut-down (hypofibrinolytic), physiological
(normal) and hyperfibrinolytic (deleted the word states), and
found that an abnormal phenotype (hypo- or hyper-) at the time
of arrival at a trauma centre was associated with increased risk
of mortality2. A study of 2540 severely injured adult patients
found that 46 per cent presented with hypofibrinolysis, 36 per
cent arrived with normal fibrinolysis and 18 per cent presented
with hyperfibrinolysis3. Both hypo- and hyperfibrinolysis were as-
sociated with increased risks of mortality and a similar pattern
has been identified in paediatric trauma patients4.

Plasma-based assays suggest that fibrinolysis may also be al-
tered following thermal injury. The primary activator of fibrinoly-
sis, tissue plasminogen activator, is elevated5,6, as is its primary
inhibitor, plasminogen activator inhibitor-1, following thermal
injury5–10. Plasminogen concentrations decline, reflecting activa-
tion to plasmin5,8,9,11. Coincident with increased generation
of plasmin, concentrations of the primary inhibitor of plasmin,
alpha-2 antiplasmin, decline5,9,12, as it complexes with plasmin
for inactivation7. These early changes reflect the evolving bal-
ance between profibrinolytic and antifibrinolytic mechanisms.
Numerous studies have also documented increased D-dimer con-
centrations, reflecting breakdown of fibrin or fibrinogen5,8,9,12–20.
It is clear that early dynamic fibrinolytic changes occur following
burn injury.

Viscoelastic assays, such as thromboelastography (TEG), allow
the real-time assessment of whole blood clotting function,
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including fibrinolysis, thereby offering advantages over other
assays in assessing the overall balance between coagulation and
fibrinolysis18. A limited number of studies characterizing whole
blood clotting function in patients with burn injury have been
reported. Park and co-workers observed a hypercoagulable state
and increasing fibrinolysis over the first 7 days after burn injuries
with viscoelastic testing, that was not detected using standard
coagulation assays18. Huzar and colleagues reported TEG data for
65 patients with at least 15 per cent total body surface area
(TBSA) burn21. Some 60 per cent had a hypercoagulable state on
admission, while 24 per cent were hypocoagulable. TEG values
predicted 24-h resuscitation volumes, as well as plasma and
platelet transfusions (P< 0.050).

Considering the early activation of both pro- and antifibrino-
lytic mechanisms early in the post-burn period, it seems likely
that various fibrinolytic phenotypes may develop in burn
patients, and that specific phenotypes may influence patient out-
comes. It was hypothesized that patients with burn injury would
display three early fibrinolytic phenotypes, and that these pheno-
types might be related to mortality.

Methods
This was a prospective, observational study of patients with ther-
mal injuries presenting to the MedStar Washington Hospital
Burn Center, an American Burn Association verified regional
burn centre. The Institutional Review Board of MedStar Health
Research Institute and the Human Research Protections Office of
the US Army Medical Research and Development Command ap-
proved this research. The requirement to obtain advanced writ-
ten informed consent for emergency research was waived in
accordance with US Code of Federal Regulations Title 21, Part
50 – Protection of Human Subjects, Subpart B – Informed Consent
in Human Subjects and Section 50.24 – Exception from Informed
Consent Requirement for Emergency Research. This study was
conducted as part of the larger multicentre Systems Biology
Coagulopathy of Trauma (SYSCOT) Research Program22.

Study population
Patients who presented within 4 h of thermal injury were
screened for enrolment from October 2012 to March 2017.
Patients with a history of coagulopathy, those taking anticoagu-
lants, pregnant women, chemically injured patients, minors and
patients not fluent in English or Spanish were excluded from the
study. A total of 158 patients were enrolled and 115 included in
the present analysis (Fig. 1, Table S1). Patients requiring formal
burn resuscitation, typically those presenting with at least 15 per
cent TBSA burns, underwent bodyweight and TBSA-guided resus-
citation with Ringer’s lactate titrated to adequate urine output
from arrival for 24–48 h 23,24.

Clinical data
Clinical data were collected using standard case report forms and
prespecified definitions for outcome variables. All physiological
and clinical variables were recorded in REDCap25,26.

Blood sampling
Blood samples for viscoelastic testing were collected in 3.2 per
cent citrate tubes at the time of burn centre arrival/admission
(time 0) and sequentially at 2, 4, 6, 8 and 12 h. Blood samples for
clinical purposes were collected according to standard practice
and analysed by the clinical laboratory for standard parameters,
such as prothrombin time (PT) and international normalized

ratio (INR). Detailed sampling and other procedures have been
described elsewhere22.

Viscoelastic testing
Viscoelastic properties of clot formation and clot lysis in whole
blood samples were measured using the TEGVR 5000
ThromboelastographVR (TEG, Haemonetics, Boston,
Massachusetts, USA). Clotting was initiated using the
RapidTEGTM reagent, according to manufacturer instructions.
TEG was performed using equipment and procedures certified by
the College of American Pathologists. RapidTEGTM incorporates
activation of both the tissue factor and the factor XII pathways of
blood coagulation to maximally activate clotting, and provides a
rapid assessment of clot formation dynamics, clot strength and
fibrinolysis. Clot lysis was determined by examining the percent-
age decrease in clot strength 30 min after the time of maximal
clot strength. This parameter is referred to as LY30 and is a mea-
sure of fibrinolysis18. Other parameters reported for TEG included
activated clotting time (ACT), a-angle and maximum amplitude
(MA). The ACT, a-angle and MA are indicators of speed of clot
initiation, rate of clot development and maximum clot strength,
respectively.

Definitions of fibrinolytic phenotypes
Fibrinolytic phenotypes were characterized based on published
findings documenting the existence of three distinct fibrinolytic
phenotypes in non-burn trauma patients: hypofibrinolytic or fi-
brinolytic shut-down (SD), normal or physiological (PHYS) and
hyperfibrinolytic (HF)2,27. The following definitions derived from
Stettler and co-workers were used: SD was defined as LY30 less
than 0.6 per cent, PHYS as LY30 from 0.6 per cent to 7.7 per cent,
and HF as LY30 greater than 7.7 per cent27. Fibrinolytic pheno-
types were determined at each sampling time point from 0 to
12 h.

Outcomes
The primary outcome measure was 30-day mortality. Secondary
outcomes included intensive care unit (ICU) days, ventilator days
and duration of hospital stay.

Patients enrolled
in MWHC
n = 158

Patients with rTEG-
LY30 available n = 117

Patients included
in analysis n = 115

Excluded
  No TEG-LY30 at admission n = 41

Excluded
  Had no cutaneous burns n = 2

Fig. 1 Study cohort description

Patients without admission rapid thromboelastography measurement of clot
lysis at 30 min after maximal clot strength (rTEG-LY30) and those without
cutaneous burns were excluded from the present analysis. MWHC, MedStar
Washington Hospital Center.
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Statistical analysis
Descriptive statistics characterized the demographics and inju-
ries of the patients. Categorical variables were summarized as
frequencies and percentages and tested using v2 or Fisher’s exact
test for associations between survival status and the three fibri-
nolytic phenotypes. Continuous variables were expressed as me-
dian and interquartile ranges and tested using the Kruskal–
Wallis test for comparing differences among fibrinolytic pheno-
types when appropriate. Mann–Whitney U test with Bonferroni’s
correction was used for post hoc pairwise comparisons. Follow-
up time was from admission until death, discharge or censoring
on the 30th day after admission. Associations for the time to, or
likelihood of, mortality were determined by uni- and multivari-
able Cox proportional hazards models (for computing hazard ra-
tios (HRs)) and logistic regression models (for computing the odds
ratios (ORs)). The Kolmogorov-type supremum test was used for
the Cox proportional hazards assumption. Kaplan–Meier plots
with log-rank tests were also used to characterize mortality
based on fibrinolytic phenotype. Statistical significance was de-
termined at the two-sided P< 0.050 level. All data analyses were
performed using SAS, version 9.4 (SAS Institute Inc, Cary, North
Carolina, USA).

Results
Demographics
Patient demographics and injury characteristics are presented in
Table 1. Patients were predominantly male (68.7 per cent) with a
median age of 40 (i.q.r. 28–57) years. The median burn TBSA was
13.0 (i.q.r. 6–30) per cent and 42 (36.5 per cent) patients had se-
vere burns (burn TBSA greater than 20 per cent). Overall mortal-
ity rate was 18.3 per cent (21 patients), and median time to death
was 41.1 (i.q.r. 5.4–284.7) hours from admission (Table 1). Due to
workflow constraints or early mortality, the number of patients
with results for LY30 differed at the various time points. At hour
0 (admission) data were available for 115 patients, at later time
points, data were available for between 70 and 97 patients.

Admission fibrinolytic phenotypes
At admission, 30.4 per cent of patients displayed the SD pheno-
type, 60.0 per cent were PHYS and 9.6 per cent were HF (Table 1).
Patients with either the SD or HF phenotype were more likely to
have burn TBSA greater than 20 per cent than those with the
PHYS phenotype (P¼ 0.047) (Table 1). Burn TBSA greater than 20
per cent was associated with a higher proportion of patients with
abnormal fibrinolysis (HF and SD combined) than burn TBSA 20
per cent or less (54.8 versus 31.5 per cent; P¼ 0.010). After adjust-
ment for age, BMI, TBSA greater than or equal to or less than 20
per cent, total Glasgow coma score and inhalation injury, admis-
sion HF was associated with a nearly 13-fold higher risk of mor-
tality (OR 12.61, 95 per cent c.i. 1.12 to 142.57; P¼ 0.040; Table 2)
and a five-fold shorter time to death (HR 4.95; 95 per cent c.i. 1.17
to 20.95; P¼ 0.030; Table 2 and Fig. 2a), compared with PHYS.
Compared with admission PHYS, admission SD was not associ-
ated with increased mortality (P¼ 0.256).

Delayed fibrinolytic phenotypes
The percentage of surviving patients exhibiting the HF phenotype
declined over time, while the percentage with SD increased (Table
3). HF was not associated with mortality at sampling times after
time 0. Ten patients first developed the HF phenotype between 2
and 12 h after admission (delayed HF group), and one

subsequently died. The difference in mortality between this
delayed HF group and patients that exhibited admission HF was
not, however, statistically significant (P¼ 0.064). SD was associ-
ated with increased mortality at 4, 8 and 12 h (P< 0.001, 0.006 and
0.002, respectively) (Table 3).

Based on significance level, 4-hour delayed SD was selected
for inclusion in more comprehensive models. Admission demo-
graphics and injury characteristics of patients alive at 4 h after
admission for both SD and PHYS patients are shown in Table S2.
Patients that displayed the SD phenotype at 4 h had larger burns
(P< 0.001), were more likely to be admitted to the ICU (P¼ 0.004)
and require mechanical ventilation (P¼ 0.002). Adjustment for
age, BMI, TBSA greater than or equal to or less than 20 per cent,
total Glasgow coma score and admission HF showed that patients
with 4-h delayed SD had an eight-fold increase in mortality (OR
8.27, 95 per cent c.i., 1.16 to 58.95; P¼ 0.034; Table 2). Deaths
among patients with this phenotype also occurred at a faster rate
(HR, 5.14, 95 per cent c.i. 1.07 to 24.82; P¼ 0.041; Table 2; Fig. 2b).
Transitions of patients between phenotypes from one time point
to the next were common, occurring in 36 to 40 per cent of
patients (Table 3).

Discussion
This study has characterized early fibrinolytic phenotypes in
patients with burn injury using viscoelastic monitoring. Patients
with thermal injury displayed three fibrinolytic phenotypes. At
admission, 60.0 per cent of patients presented with PHYS, while
30.4 per cent were SD and 9.4 per cent displayed the HF pheno-
type. Using newly defined cut-offs for fibrinolytic phenotypes,
Stettler and co-workers found that 71.0 per cent of severely in-
jured patients exhibited a physiological phenotype, while 19.8 per
cent were hypofibrinolytic and 9.2 per cent were hyperfibrinolytic
early after trauma27. At these cut-off levels, the distribution of
phenotypes following trauma was comparable to those observed
in the present study of patients with thermal injury.

The HF phenotype at admission was associated with increased
30-day mortality, consistent with previous reports for non-burn
trauma2,3,27–37. In the present study, patients with the admission
HF phenotype also tended to die earlier, consistent with findings
in other trauma populations30,31,36.

Admission SD was not associated with increased mortality in
the present study, as seen in some reports for non-burn
trauma4,28,29,36,38, although not in others2,3,27,33,34. Persistent SD
following trauma (e.g., SD at admission and at 7 days) has been
shown to be a more reliable indicator of mortality than admission
SD alone36,38,39. Leeper and colleagues found that shutdown ap-
proximately doubled between the first and third hour following
trauma in paediatric patients, and that hyperfibrinolysis de-
creased by nearly half33. An increase in SD and a decrease in HF
over the first few hours after burn injuries was also observed in
the present study. It has been suggested that development of the
SD phenotype may be associated with reperfusion during the re-
suscitation following trauma40. As resuscitation takes place dur-
ing the first hours after burn injury1, this may have been a factor
in the present study.

Although admission SD was not associated with increased
mortality, delayed SD at 4 h and beyond was associated with in-
creased mortality with about an eight-fold increase at 4 h after
admission, independent of the admission HF phenotype (Table 2).
Taken together, these data suggest that abnormal fibrinolysis
during the early post-burn period is associated with increased
mortality.
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Considering the effects of admission HF, the finding that
delayed HF was not associated with mortality was unexpected,
but raises the possibility that, if early HF could be prevented,
reversed or delayed, outcomes may be improved. Of the 10
patients who developed HF after admission, only one died. It is
possible that delayed HF may occur by different mechanisms
from admission HF. Contributing factors may include the ini-
tial injury or early resuscitation, but not sepsis which would
be expected to occur later. It is also possible that the differ-
ence may lie in the patient’s innate ability to buffer the fibri-
nolytic response. Some patients have a greater innate
resistance to tissue plasminogen activator34. This may provide
some protection against HF during the early post-burn period,
but may also be a factor in development of delayed SD. This
requires further study to understand the mechanisms
involved.

Patients that exhibited either the HF or SD phenotypes at ad-
mission had larger burn TBSA. Previous studies have docu-
mented a greater degree of fibrinolytic activation associated with
increasing burn size5,8,11. Abnormal phenotypes have not consis-
tently been associated with higher injury severity in adult
non-burn trauma, with various reports of either no difference or
increased injury severity associated with SD or HF2,3,29,36,38, al-
though in children, Leeper and colleagues observed that the
Injury Severity Score (ISS) was higher in patients with fibrinolytic
shutdown4. Differences between blunt and penetrating trauma
have also been observed, with hypofibrinolysis associated more
with blunt trauma3,4. Experimental studies have demonstrated
that extensive tissue injury is associated with suppression of fi-
brinolysis, while shock is associated with hyperfibrinolysis41–43.
Burn trauma may be unique in that there appears to be a strong
relationship between extent of injury and frequency of abnormal

Table 1 Characteristics of the patients: admission fibrinolytic phenotypes

Variable All SD PHYS HF P

Number of patients 115 35 (30.4) 69 (60.0) 11 (9.6) �
Male 79 (68.7) 23 (65.7) 47 (68.1) 9 (81.2) 0.596
Age (years)* 40 (28–57) 38 (34–59) 40 (25–52) 57 (33–68) 0.164
Race/ethnicity 0.541

Caucasian 41 (35.7) 14 (40.0) 26 (37.7) 1 (9.1)
African American 45 (39.1) 12 (34.3) 27 (39.1) 6 (54.5)
Hispanic 9 (7.8) 3 (8.6) 5 (7.3) 1 (9.1)
Other 20 (17.4) 6 (17.1) 11 (15.9) 3 (27.3)

BMI* 26.7 (23.7–30.5) 27.4 (24.3–31.0) 26.5 (23.4–29.4) 24.8 (23.2–27.0) 0.225
Transport method 0.504

Helicopter 45 (39.1) 16 (45.7) 24 (34.8) 5 (45.5)
Ambulance 70 (60.9) 19 (54.3) 45 (65.2) 6 (54.5)

Time from injury to first
blood draw (min)*

106 (78–170) 103 (91–190) 97 (71–154) 95 (60–175) 0.090

Percentage of TBSA
burned*

13.0 (6.0–30.0) 18.0 (7.0–46.5) 12.0 (5.0–21.0)† 55.0 (8.0–93.0)‡ 0.015

TBSA �20% 73 (63.5) 18 (51.4) 50 (72.5) 5 (45.5) 0.047
TBSA >20% 42 (36.5) 17 (48.6) 19 (27.5) 6 (54.5)

Inhalation injury (n 5 113) 28 (24.8) 12 (35.3) 12 (17.4) 4 (40.0) 0.071
Baux score at ED * 60.0 (39.5–82.0) 67.0 (48.5–86)‡ 54.0 (37.0–73.0)† 79.6 (56.5–139.0)‡ 0.015
GCS at ED score* 15 (13–15) 15 (9–15) 15 (15–15)† 12 (3–15)‡ 0.023
ICU Admission 72 (62.6) 28 (80.0) 40 (58.0) 4 (36.4) 0.015
ICU stay (survivors, n 5 55)

(days)*
7 (2–17) 11 (3–22) 6 (1–14) 5 0.344

Mechanical ventilation 46 (40.0) 21 (60.0) 20 (29.0) 5 (45.5) 0.009
Ventilator duration (survi-

vors, n 5 26) (days)*
6 (2–14) 3 (1–11) 10 (5–17) 3 0.123

Duration of hospital stay
(n 5 94), days*

11 (6–20) 13 (8–25) 10 (3–19) 11 (8–16) 0.200

Total fluids at 24 h (ml)* 6838 (3435–11597) 9134 (3207–12687) 6220 (3310–11209) 5310 (3750–37310) 0.850
Mortality 21 (18.3) 8 (22.9) 7 (10.1) 6 (54.6) 0.001

Time to death (h)* 41.1 (5.4–284.7) 31.4 (7.7–287.5) 282.2 (41.1–482.8) 5.6 (2.2–22.0) 0.133
Cause of death 0.156

Burn shock 8 (38.1) 2 (25.0) 2 (28.6) 4 (66.7)
Organ failure 6 (28.6) 1 (12.5) 3 (42.9) 2 (33.3)
Other (cardiac arrest;
brain death; sepsis)

7 (33.3) 5 (62.5) 2 (28.6) 0 (0.0)

LY30 (%)* 1.5 (0.3–3.5) 0.0 (0.0–0.2)‡ 2.2 (1.4–3.5)† 10.6 (9.4–14.4)§ <0.001
ACT* 121 (105–136) 113 (105–128) 121 (105–128) 125 (121–144) 0.131
Angle* 73.8 (69.4–77.2) 72.8 (64.4–77.7) 74.4 (71.6–76.9) 64.7 (54.8–76.8) 0.088
MA* 61.8 (56.0–65.0) 60.4 (54.5–64.0)‡ 62.5 (59.3–66.3)† 54.2 (44.0–62.2)‡ 0.009
PT at admission (n 5 87)

(sec)*
13.3 (12.9–14.1) 13.2 (12.9–13.9) 13.4 (13.0–14.2) 13.3 (12.6–42.5) 0.606

INR at admission (n 5 87)* 1.0 (1.0–1.1) 1.0 (1.0–1.1) 1.1 (1.0–1.1) 1.0 (1.0–1.2) 0.121
INR >1.2 4 (4.6) 0 (0.0) 3 (5.4) 1 (16.7) 0.210
Platelet count (3 103/ul)* 259 (210–299.5) 244.5 (200–292.5) 256.5 (210–300) 282 (255–340) 0.387

Values in parentheses are percentages unless otherwise stated; *values are median (i.q.r.). SD, fibrinolytic shutdown; PHYS, physiologic; HF, hyperfibrinolytic; ED,
emergency department; TBSA, total body surface area; GCS, total Glasgow coma scale; ICU, intensive care unit; LY30, Clot lysis at 30 min after maximum clot
strength; ACT, activated clotting time; MA, maximum amplitude; PT, prothrombin time; INR, international normalized ratio. P values were calculated with v2 or
Fisher’s exact test or Kruskal–Wallis test. For pairwise comparison, †, ‡, § differ using Mann–Whitney U test with a Bonferroni correction (adjusted P¼ 0.0167).
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fibrinolysis. It is possible that this relationship exists because
TBSA is a more direct measure of extent of injury than ISS.

INR did not differ among fibrinolytic phenotypes in the pre-
sent study. Principal component analyses of both viscoelastic
assays and coagulation factors have demonstrated that the two

systems can behave differently, are measured differently and
represent independent but integrated systems contributing to
overall haemostatic balance44,45. Some studies in burn patients
have reported prolonged PT/INR8,11,15 in the presence of fibrino-
lytic activation, while others have not6,10. Some have reported

Table 2 Likelihood of 30-day mortality and time to death for fibrinolytic phenotype at admission

Variable Odds ratio P Hazard ratio P

Sex, female versus male 0.64 (0.21–1.89) 0.415 0.72 (0.26–1.96) 0.516
Ethnicity

African American versus European
American

1.46 (0.47–4.53) 0.514 1.61 (0.57–4.55) 0.369

Hispanic versus European American � � �
Other versus European American 2.50 (0.67–9.08) 0.164 2.18 (0.70–6.76) 0.178

Age at injury, each increase of 1 year 1.06 (1.03–1.10) <0.001 1.05 (1.02–1.08) <0.001
BMI, �30 versus <30 kg/m2 0.24 (0.05–1.08) 0.063 0.95 (0.90–1.02) 0.138
Total percentage TBSA burn, >20 versus
�20%

29.33 (6.34–135.57) <0.001 12.14 (2.78–52.93) <0.001

Inhalation injury, yes versus no 8.36 (2.85–24.51) <0.001 4.50 (1.75–11.53) 0.002
GCS, each increase of 1 0.80 (0.72–0.88) <0.001 0.85 (0.79–0.92) <0.001
Transport, helicopter versus ambulance 0.52 (0.20–1.34) 0.173 1.45 (0.61–3.43) 0.400
Admission fibrinolytic phenotypes

SD versus PHYS 2.62 (0.86–7.97) 0.089 1.94 (0.70–5.37) 0.203
HF versus PHYS 10.63 (2.57–44.00) 0.001 8.10 (2.63–24.96) <0.001
HF versus SD 4.05 (0.97–16.84) 0.054 4.18 (1.36–12.80) 0.012

Delayed fibrinolytic phenotype at 4 h
SD versus PHYS 9.84 (2.03–47.65) 0.005 5.60 (1.25–25.13) 0.024

Adjusted model:
Admission fibrinolytic phenotype*

SD versus PHYS 2.13 (0.46–9.83) 0.323 1.89 (0.63–5.67) 0.256
HF versus PHYS 12.61 (1.12–142.57) 0.041 4.95 (1.17–20.95) 0.030
HF versus SD 5.92 (0.50–70.03) 0.158 2.62 (0.60–11.51) 0.202

Delayed fibrinolytic phenotype†

SD versus PHYS 8.27 (1.16–58.95) 0.034 5.14 (1.07–24.82) 0.041

Values in parentheses are 95% confidence intervals. SD, fibrinolytic shutdown; PHYS, physiologic; HF, hyperfibrinolytic. * Adjusted for age, BMI, total body surface
area (TBSA) �/>20 per cent, total Glasgow coma scale (GCS) and inhalation injury; † adjusted for age, BMI, TBSA �/>20 per cent, total GCS and hyperfibrinolysis
at admission (H0). ED, emergency department.
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Kaplan–Meier plots. a Estimated 30-day survival rate by fibrinolytic phenotypes for patients that displayed hypofibrinolysis (shutdown), physiological fibrinolysis, or
hyperfibrinolysis at admission (admission fibrinolytic phenotypes). Log-rank P<0.001. Hazard ratios (95 per cent c.i.): shutdown versus physiological, 1.89 (0.63–5.67);
hyperfibrinolysis versus physiological, 4.95 (1.17–20.95); hyperfibrinolysis versus shutdown 2.62 (0.60–11.51). b Estimated 30-day survival rate in patients who
displayed the shutdown or physiological fibrinolytic phenotypes 4 h after admission (delayed fibrinolytic phenotype). Log-rank P¼0.010. Hazard ratio (95% c.i.) 5.15
(1.07–24.82).
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elevated INR in both hypo- and hyperfibrinolytic phenotypes3,4,
while others have not2. ACT did not differ among phenotypes
(Tables 1 and 3) , although MA was reduced in HF, similar to the
finding in a large cohort of patients with non-burn trauma36.

Fibrinolytic activation after burn injury has been well docu-
mented5. Higher levels of fibrinolytic activation are associated
with larger burn size, organ failure and mortality. Those with
overt disseminated intravascular coagulation, as diagnosed
using measures of both coagulation and fibrinolysis, have
greater risk of organ failure and mortality6,10. While coagula-
tion and fibrinolytic activation were observed in these studies,
it was noted that there was a relatively greater increase in fi-
brinolytic inhibitors than fibrinolytic activators. It was hy-
pothesized that over-activation of coagulation combined with
relatively inhibited fibrinolysis, resulted in diffuse fibrin depo-
sition, leading to organ failure6,10. The results of the current
study are consistent with these findings and suggest that burn
injury induces early fibrinolytic activation, related to the de-
gree of injury, followed by development of fibrinolytic inhibi-
tion in a subset of patients.

As admission HF can be recognized within 1–2 h of injury and
delayed SD recognized within 4 h of burn injury using TEG, a win-
dow of opportunity for treatment may exist as noted in other
populations33. It may be possible to titrate antifibrinolytic or pro-
fibrinolytic drugs to alter the development or time course of ab-
normal phenotypes. Alternatively, early plasma transfusion may
be an option, considering its potential capacity to ‘buffer’ the fi-
brinolytic system both in vitro and in vivo43,46. Haemostatic resus-
citation, including plasma, has been shown to reverse HF in
paediatric trauma patients39.

This study has limitations. Phenotypes were based solely
on TEG results, without biochemical confirmation of

fibrinolytic status. Potential mechanisms that led to the TEG
phenotypes could not be assessed. Future research, match-
ing biomarkers with viscoelastic analyses in burn patients
are needed. There were some missing data points in the TEG
data. It is possible that the true starts of delayed phenotypes
were missed, as the first available time points were
assigned. Across sampling times, TBSA was similar (Table 3)
so it seems unlikely that the missing samples systematically
impacted results for any one patient group or phenotype
preferentially.

Three fibrinolytic phenotypes that are independently related
to mortality evolve over time in patients with burn injury.
Identification and possible modification of these phenotypes
based on early viscoelastic monitoring may be valuable in the
management of patients with thermal injury.
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Table 3 Hyperfibrinolysic and shutdown phenotypes between 0
and 12 hours after admission: incidence and mortality

Hour 0
(n¼115)

Hour 2
(n¼97)

Hour 4
(n¼85)

Hour 8
(n¼74)

Hour 12
(n¼70)

Hyperfibrinolysic
phenotype
Patients with HF 11 (9.6) 5 (5.2) 5 (5.9) 4 (5.4) 1 (1.4)
Mortality in HF
patients

6 (55.5) 2 (40) 0 (0) 0 (0) 0 (0)

P for comparison
with no HF

0.005 0.231 0.585 0.999 0.999

Shutdown
phenotype
Patients with SD 35 (30.4) 43 (44.3) 37 (43.5) 27 (36.5) 31 (44.3)
Mortality in

patients with SD
8 (22.9) 10 (23.3) 12 (32.4) 9 (33.3) 10 (32.3)

P for comparison
with no SD

0.399 0.288 <0.001 0.006 0.002

TBSA burn
�20% 73 (63.5) 62 (63.9) 55 (64.7) 52 (70.3) 46 (65.7)
>20% 42 (36.5) 35 (36.1) 30 (35.3) 22 (29.7) 24 (34.3)
P compared with

Hour 0
� 0.947 0.858 0.336 0.758

Patient transitions
among
phenotypes

� 35 (36.1) 31 (39.2) 27 (40.3) 23 (38.3)

Total with abnormal
phenotype
(HF or SD)

46 (40.0) 49 (50.0) 43 (50.0) 31 (41.3) 33 (46.5)

Values in parentheses are percentages. HF, hyperfibrinolysic; SD, shutdown;
TBSA, total body surface area. P values were calculated with v2 or Fisher’s
exact test.
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